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Abstract—The cold-start problem is a major factor that limits the effectiveness of recommendation systems. Having too few available
interaction records brings a series of challenges when predicting user preferences. At present, there are two main kinds of strategies for
solving this problem from different perspectives. One is cross-domain recommendation (CDR), which introduces additional information
by domain knowledge propagation with transfer learning. However, CDR methods follow traditional training processes in machine
learning and cannot solve this typical few-shot problem from the perspective of optimization. The other type of method that has recently
emerged is based on meta-learning. Most of these approaches focus only on generating a meta-model to perform better on new
tasks and ignore improvements based on cross-domain information. Therefore, it is necessary to design a novel approach to solve
this problem with both domain knowledge and meta-optimization. To achieve this goal, a novel cross-domain meta-learner for cold-
start recommendation (MetaCDR) is proposed. In MetaCDR, we design a domain knowledge meta-transfer module to connect different
domain networks. In addition, we introduce a pretraining strategy to ensure its efficiency. The experimental results show that MetaCDR

performs significantly better than state-of-the-art models in a variety of scenarios.

Index Terms—Recommender systems, cold-start problem, transfer learning, meta-learning, cross-domain recommendation.

1 INTRODUCTION

ACED with an increasingly severe information overload
Fproblem, recommendation systems are playing essen-
tial roles in online services [8], [16], [19]. An excellent
recommendation system can accurately and quickly dis-
cover users’ personalized preferences, which provides con-
venience to users and brings substantial economic benefits
to businesses [7], [53], [65]. Most recommendation systems
learn a given user’s preferences from the user’s historical
interaction information to generate recommendation results.
However, in the real world, new users and items will
constantly enter the system. These new users and items
with little available data severely limit the performance
of recommender systems; this is the well-known cold-start
problem [15], [51].

An intuitive method for solving the cold-start problem
is to introduce more available data to the system [17],
[51], [70], such as by obtaining additional item features or
the demographic information of the examined user during
the data collection phase (e.g., extracting this information
from knowledge graphs) [54], [57]. Instead of relying on
the availability of additional information and incurring the
cost of obtaining it manually, a more attractive approach
is to improve the model structure [60] or build a mapping
function [36] to introduce knowledge from other domains;
this is called cross-domain recommendation (CDR) [68].
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Fig. 1. An example of a cross-domain scenario including two domains:
movies and books. We infer the users’ personal preferences by integrat-
ing their interactions in the two domains.

Fig.1 shows an example of a cross-domain scenario. In the
real world, the same users in multiple domains can be
aligned, and the user interaction records in other domains
are considered auxiliary information in the current domain.
In this regard, deep fusion networks [37] with transfer learn-
ing [39] (e.g., cross-stitch networks (CSNs)) [22], [61] have
achieved remarkable results. However, most of these works
have focused on building more complex neural networks to
achieve high-quality information transmission while ignor-
ing the important role of model optimization strategies in
solving this typical few-shot problem. The core problem of
cold-start recommendation is that new users or items have
only a small number of interactions in the recommender
system with which to model their features. Similarly, the
few-shot problem is that only a small number of samples
per class are available [56]. Therefore, it is feasible to use
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few-shot learning methods to solve the cold-start problem.
Recent research on meta-learning [21] has provided new
ways to solve this few-shot problem from an optimization
perspective. Among them, gradient-based meta-learning
(e.g., model-agnostic meta-learning) [12] learns the shared
information among tasks to adapt to a new task with a few
parameter update steps. This method has achieved great
success in solving the cold-start problem for recommender
systems. It treats each user as a single task and learns gen-
eral characteristics among users. When a new user arrives,
only a small amount of interactive information is needed to
predict the user’s preferences. However, most of the current
meta-learning models focus on generating a meta-model to
perform better on new tasks [9], [26], [59], and only simple
MLPs are used as the basic model. Improving the extraction
of cross-domain information is ignored, which leads to great
restrictions on the usage scenarios of the resulting model.
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Fig. 2. The differences between the problems in our work and previous
works.

Although some meta-learning algorithms have focused
on solving the cross-domain problem [52], [58], they are dif-
ferent from those required to solve the problems we describe
above. We show the difference in Fig.2. In previous works,
although each task is obtained from a different domain, each
task only contains samples from one domain. The challenge
of these works is to determine the domains to which the
tasks belong. However, in our work, each task contains
samples from different domains. The challenge is to utilize
domain relevance to transfer knowledge between different
domains for better performance.

Therefore, to solve the cold-start problem, it is necessary
to propose a model that makes full use of the advantages
of cross-domain knowledge and introduce a model opti-
mization strategy simultaneously. However, this task faces
the following challenges: 1) How can the problem of cross-
domain cold start be rationally redefined so that it can be
applied to meta-optimization methods? Unlike traditional
machine learning, meta-learning has special requirements
for data and scenarios. Although the method of apply-
ing meta-learning to recommender systems has matured,
determining how to transform the cold-start problem of
cross-domain scenarios into a problem suitable for meta-
optimization is still a challenge. 2) How can cross-domain
knowledge transfer be achieved in a meta-learning setting?
The current meta-learning-based models that can alleviate
the cold-start problem are always based on simple MLP net-
works, which severely limit the expression ability yielded by
the network and the obtained cross-domain knowledge. The
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introduction of transfer learning networks will inevitably
face the complex problem of adaptation between transfer
learning and meta-learning. 3) How can the efficiency of
the resulting model be ensured? Meta-learning usually con-
sumes more resources and time than traditional training
methods. Moreover, with a more complex network structure
and larger amounts of data, this problem becomes more
serious [12].

Considering the above challenges, we propose a novel
cross-domain recommendation model via meta-learning
called MetaCDR, which solves the cold-start problem
through two resources: cross-domain knowledge and an
optimization model. We define the cold-start problem in
cross-domain scenarios as a new few-shot problem and op-
timize it with model-agnostic meta-learning (MAML) [12].
In this model, a module called DKMT is designed based
on a CSN [37] to perform domain-knowledge transfer in
the meta-learning setting. Finally, we propose a pretraining
strategy to reduce the amount of computer resources and
time required for model training, thereby enhancing the
practicality of MetaCDR.

The contributions of this paper are as follows:

1) We design a novel recommendation model
with transfer learning and meta-learning called
MetaCDR to solve the cold-start problem. To the
best of our knowledge, this is the first attempt to
solve this problem from the viewpoint of both cross-
domain knowledge and model optimization.

2) We propose a module called DKMT, which is de-
signed specifically for recommender systems, to
perform knowledge transfer between different do-
mains.

3) We introduce a pretraining strategy for MetaCDR to
reduce the amount of resources and time consumed
while achieving similar effects.

4) A sufficient number of experiments are performed
to prove that the results of MetaCDR are signifi-
cantly better than those of several state-of-the-art
methods in various scenarios. We also conduct an
ablation experiment and detailed analysis to verify
the impact of each component of MetaCDR and
show the effectiveness of DKMT.

The structure of this paper is as follows: Section 2 in-
troduces the related work. Section 3 defines the cold-start
problem in cross-domain scenarios. Section 4 describes the
structure and training process of MetaCDR in detail. Section
5 introduces the experimental settings and analyzes the
results. In Section 6, we conclude this paper and introduce
our future work.

2 RELATED WORK
2.1 Cross-Domain Recommendation

Cross-domain recommendation (CDR) [68] is a commonly
used method for solving the cold-start problem [41] by
alleviating data sparseness. By transferring and sharing
information across different domains, the relationships be-
tween the domains and semantics of user preferences can
be explored to generate better recommendations [47], [48].
The key to this technology is the method of learning the
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complex relationships between different domains. Recently,
many CDR approaches have been proposed [13], [28], [55].
Man et al. [36] proposed embedding and mapping methods
that model domain relationships through neural networks.
Utilizing a dual-objective optimization method, Zhu ef al.
[66] achieved simultaneous performance improvements in
both the source and target domains. Hu ef al. [22] pro-
posed a deep cross network to realize the two-way transfer
of knowledge between the two domains. Liu et al. [33]
extended CoNet with image information to extract users’
aesthetic preferences. Zhao et al. [62] integrated like-minded
users with an end-to-end framework to further enhance the
effect of CDR. Krishnan et al. [25] leveraged the contex-
tual invariance across domains to simultaneously develop
cross-domain and cross-system recommendations. Bonab
et al. [2] explored different market-adaptation techniques
inspired by state-of-the-art domain adaptation and meta-
learning approaches and proposed a neural approach for
market adaptation. Li et al. [29] presented a debiasing
learning-based cross-domain recommendation framework
with causal embedding to correct the data selection bias in
cross-domain scenarios with a generalized propensity score
and to estimate the propensity score when domain-specific
confounders are unobserved. Sahu et al. [44] utilized matrix
factorization, by which a rating matrix is decomposed into
several submatrices. Li et al. [27] proposed a novel CDR
method via regression analysis for cold-start users who
never rated items in the target domains.

However, most of the current transfer-learning-based
methods are devoted to sharing information more effec-
tively between domains by improving the complex struc-
tures of cross-domain networks while ignoring the impor-
tance of the optimization for solving the few-shot problem.
In this paper, we propose a novel model that incorporates a
transfer-learning-based CDR network with an optimization
approach to enhance the ability of the overall model to solve
the cold-start problem.

2.2 Meta-Learning Recommendation

Meta-learning [21] is also known as learning how to
learn. Unlike traditional machine learning methods, a meta-
learning model is trained through many separate tasks to
learn their similarities and differences and to obtain a base
model that can be adapted to new tasks with rapid updating
[52], [58]. Common meta-learning methods can be divided
into three categories: metric-based [6], [45], [50], memory-
based [14], [46], and optimization-based [30], [38], [43] ap-
proaches. Previous works have tried to utilize a variety of
meta-learning methods in recommender systems to solve
the cold-start problem and achieve good results.

Vartak et al. [49] used a meta-learning-based method to
predict users preferences for tweets based on their historical
clicks. Du et al. [10] predicted user behavior via sequential
recommendations in different domains using meta-learning.
However, this method only learns common initialization
parameters for each domain and does not consider the accu-
rate alignment of fine-grained information across domains.
Bharadhwaj [1] modeled each input user as a task with
the optimization-based meta-learning method (MAML). Lee
et al. [26] extended the above method by optimizing the
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parameters of the model in groups. Lu et al. [34] introduced
heterogeneous information networks as additional informa-
tion in a meta-learning environment to further alleviate
the cold-start problem. Dong et al. [9] used a memory-
augmented neural network to improve the model effect
with respect to solving the cold-start problem. Zheng et
al. [64] used a matching network to address the sequential
recommendation cold-start problem without side informa-
tion. Yu et al. [59] solved the problem of neglecting minor
users through a meta-learning approach with a personalized
adaptive learning rate. Lin ef al. [32] further alleviated the
cold-start problem with neural processes. Zhu et al. [69]
reduced the bias toward limited overlapping users in the
embedding and mapping approach via a meta-network.
Feng et al. [11] developed a contextual modulation meta-
learning framework for efficient and complete recommen-
dation. Zhu et al. [71] proposed an embedding cold-start
approach with meta-scaling and shifting networks to avoid
the effects of noisy interactions. However, current methods
do not consider the role of cross-domain knowledge transfer
in meta-learning recommendation.

3 PRELIMINARIES

In this section, we first provide a specific definition for the
cold-start problem in CDR. Then, as the base model for the
new work, a feature embedding method and a multilayer
feed-forward neural network for personality prediction are
introduced.

3.1 Problem Formulation

Two different domains (such as movies and books), both
containing user features, item features, and interaction
records, are called the source domain D, and target domain
D, according to the interaction sparsity difference between
them. The users who appear in both domains are called
overlapping users. The features of these overlapping users
are represented as a set U, and item features are represented
as sets I, and I;. The interaction information between users
and items can be expressed as R, and R, by implicit
feedback (such as clicks, browsing or likes) [20] or explicit
feedback (such as ratings) [26]. It is worth mentioning that
interaction records for new users or items are often scarce;
this is called the cold-start problem in CDR.

Our task is to use the features of users, items, and the
interaction records among them to train a model to make
predictions regarding the users’ item ratings. The function
is expressed as follows:

'Fmsa’ﬁu,t = f@(u;isvit)a (1)

where #, ; and 7, ; are the predictions of the ratings of user
u C U for items i, C I and i; C I; from source domain
D, and target domain Dy, respectively. f is the predicted
model, and 6 is the parameter of f.

In our model, we treat each domain as a separate rec-
ommendation task and adopt a single-domain method to
model each task separately. Then, a cross-domain network
is used to connect the two domains and perform knowledge
transfer. A meta-learning strategy is used to train the do-
main models jointly. In the next section, the basic models
are introduced before MetaCDR.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3208005

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

4 Target Domain Support Set Source Domain N
A L I L N S N
) Semantic-wise update Query set flow
m G ‘ Relation-wise update Support set flow ‘
m hGls ) ! g
mme 4 | N € —_—
AT — A | o» - o n §
g5 m|(mmm{l P~ o S =] | ©
b Query Set @; @ % }‘% @ E3 E
\ Part B: Data processin J = [L] 3 @ @
|
Ve N | (0]
\ : ) B
- ; N &H
gz (source] [ item ( | <
= fe | . 3
Item Vector] | Embedding ! Embedding - %
g |
g |
H s |
|
H o — !
User] User g‘ SN :
Vector E |
: |
|
z ’ |
E |
q |
\ !
Target| h . ; . C
L L) em | fyenr Training ! Serving

Part A: Structure of MetaCDR )

Fig. 3. The overall workflow, structural details, and data processing procedure of MetaCDR.

3.2 Embedding and Recommendation

In this section, we introduce the embedding method and the
structure of the basic model for a single domain.
Embedding: v — e,,7 — e;. Traditional recommender
systems use one-hot vectors to represent the IDs of users
and items, but these systems can only predict the interac-
tions between existing users and items; they cannot learn
user preference information. When faced with new users
or items, a one-hot vector is helpless. Therefore, we use
the demographic information of users (such as their ages,
genders, and occupations) and the features of items (such
as film directors or book types). These features provide
users’ potential preferences in the recommendation system.
Specifically, we first divide the available numeric informa-
tion into groups and represent it as integers, convert the
category information into one-hot vectors, and then use a
dimensional compression matrix for embedding as follows:
eu = fo,(u) = [urp1; uopo; usps; .....;unpn]’, ()
where e, is the embedding vector of user u. f is the em-
bedding function for users with the parameters 6,,. u,, is an
integer or a d;-dimensional one-hot vector representing user
feature n € {1,..., N}, and p, is the de-by-d; embedding
matrix for the corresponding categorical content of user w.
[-; -] is the concatenation operation. The items are embedded
in a similar way:
ei = fo,(i) = [i1q13i2q2; 13G3; s inrqua) 3)
where e; is the embedding vector of item . f is the em-
bedding function for items with the parameters 0;. i,, is
an integer or a dj-dimensional one-hot vector representing
an item’s feature m € {1,...,M}, and g, is the d.-by-dj
embedding matrix for the corresponding categorical content
of item i. [-;+] is the concatenation operation. Next, e, and
e; are connected and fed into the recommendation model.
Recommendation: (ey,e;) — 9y,i. We use MLPs to
model user preferences and predict the ratings, implicit

feedback, or dwell times for items. The model can be ex-
pressed as:

Fui = MLPy([ey; e;]7) = Wi zp_1,
Tho1 = oWy @p—2 + br—1),

(4)

xry = O'(WiT.IQ + bl),
zo = [eu;e]”

where 7, ; is the model’s prediction of user feedback, MLP
stands for a multilayer perceptron, and ¢ is the set of its
parameters, including a weight matrix W and a bias vector
b. o is the activation function; here, we use the rectified
linear unit (ReLU). e, and e; are the embedding vectors of
users and items, respectively.

4 METACDR

Fig.3 shows the overall workflow of MetaCDR. In this
section, the details of MetaCDR are presented. First, we
introduce the cross-domain combination method of the net-
work, including the sharing of the user embedding network
and the cross-domain connection between fully connected
networks in the meta-learning environment. Second, we
redefine the cold-start problem in the CDR scenario as a
few-shot problem. Third, we propose a meta-optimization
method for MetaCDR. In addition, we design a pretraining
strategy to greatly reduce the time and resource consump-
tion.

4.1 User Embedding Sharing

Part A of Fig.3 shows the structural details of MetaCDR,
and the left side of its structure is the embedding part. To
combine the networks of the source and target domains and
share information, we first share the user embedding layer
so that the same user feature has a consistent initial embed-
ding in different domains, which can help the model focus
on learning the mappings of the commodity characteristics
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between domains. Our method of obtaining the embedding
vector for each domain is as follows:

Vi = [fo, (w); fo. (i)]7, Vi = [fo. (w); fo, (ie)]",  (5)

where V; is the input vector on the source domain side
and V; is the input vector on the target domain side. f
represents the embedding functions, and 6,, 65, and 6, are
the parameters of the embedding functions for users, source
domain items, and target domain items, respectively.

4.2 Knowledge Transfer between Domains

Before introducing the structure of DKMT, we first review
the deep neural network transfer model called CSN [37],
which has achieved significant results for multitask learning
problems in the field of computer vision. We also note the
problems that need to be solved when performing cross-
domain knowledge transfer in the recommendation system
and meta-learning environment.

Given two convolutional neural network models, the
CSN is used to connect the corresponding layers. Specifi-
cally, at location (i, j) in the activation map, we have:

fﬁ _ |aaa aAB l‘”
okl

apa o] |z}
where z'{ and z}} represent the current-layer inputs of
networks A and B, respectively; avaa, ®ap, apa, and app
represent the cross-stitch parameters, which are used to
implement knowledge transfer; and ] and 7'} are the
inputs of the next layer of the networks.

Consider the following three issues: 1) The four weight
parameters used by the CSN can only achieve content mi-
gration in the same dimensional space, but our model uses
an N-layer fully connected neural network with different
dimensions for each layer. 2) The CSN assumes that all
dimensions of information are equally important. However,
unlike images in computer vision, the importance of each
user or item dimension in the recommendation system is
different and requires an independent weight [5]. 3) The
CSN assumes that all information is worth migrating, but it
is evident that not every feature is helpful in other domains,
at least in the recommendation system. We need to find a
way to make the model transfer knowledge more conserva-
tively and to better adapt the meta-learning framework.

To solve the above problems, we design a module to
realize domain knowledge meta-transfer, called DKMT. We
show this module on the right side of Part A in Fig.3, and
we propose solutions to the above three problems.

For the first two problems, we use weight matrices to
replace the weight values in the CSN, which is equivalent
to a cross-domain fully connected network. This structure is
expressed as:

- -1
ol = Wl al=t ¢ HL 2t bl

88"Ss S (7)
= Wl il

where 2! and x! represent the outputs of the cross network
and are used as the inputs of the next layer of the network
in the source and target domains. W/, and W}, represent
the domain-specific weight matrices of the source domain
and target domain, respectively, which are used to perform
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knowledge transfer within the domain. H!, and H], are the
cross-domain weight matrices between the two domains,
which are used to perform knowledge transfer from the
source to the target domain and from the target to the
source domain. z}~! and z!~! are the inputs of the cross
network and are also the outputs from the last layer of
the network with respect to the two domains. b, and b}
are the biases in the two domains. In contrast to the CSN,
H!, and H|, are d' x d'~!-dimensional parameter matrices,
where d' is the dimensionality of ! and !, and d'~* is the
dimensionality of z} and 2.'. In this way, we perform
knowledge transfer between different-dimensional layers.
Since the effectiveness of meta-learning can be signifi-
cantly reduced on complex models, we set H!, and H/, to
the same matrix H' to reduce the complexity of the model:

—1
ol = Whos+ Halm 0,

8
ot =Wha, + H'2' 71 -0, ®)

where H! is the shared parameter matrix used for knowl-
edge transfer between the two domains. The other parame-
ters are the same as those in formula (7).

For the last problem, we introduce a widely used
sparsity-induced regularization method called the least ab-
solute shrinkage and selection operator (LASSO) to the
knowledge transfer matrix H ! As usual, LASSO regular-
ization can help the model filter more useful parameters
through sparsity. The calculation of the regularization term
can be expressed as:

dl dl—l

QEY =AY

i=1 j=1

l
h;

©)

where () stands for LASSO regularization, H' is the pa-
rameter of the knowledge transfer matrix in the /-th layer,
hi ; is the (i,j)-th parameter in the matrix, and X is the
hyperparameter used to control the degree of sparsity.

4.3 Multilabel Loss Function

We define the loss as the sum of the mean square errors
(MSEs) of the two networks and the regularization term. At
this stage, the loss function of MetaCDR can be expressed
as:

L= LU I, Ry) + Lo(U, I, Ry) + QUHYE,)  (10)
RS k ko
Ls = d Z (ru’is — ru’is) (11)
k=1
1 X k N
Ly = Ve Z (Tu,it — rw-t) (12)
k=1
Vo, Ty = folu,is,iy) (13)

where L represents the overall loss; £, and L£; represent
the MSE loss functions for the source and target domains,
respectively; v € U, is € I, and 4, € I; are the users and
items from the two domains; v, € R, and r; € R; are the
ratings of the two domains; and 7 and 7, are their predicted
values. §) represents the regularization term, and H' (I €
{1, ..., L}) are the parameters of DKMT. K is the number of
interaction records.
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Above, the network structure of MetaCDR is introduced.
Next, we redefine the cold-start problem as a few-shot prob-
lem and introduce the utilized training and test processes
based on meta-learning.

4.4 Data Processing

Part B of Fig.3 shows the employed data preprocessing
method. In MetaCDR, each task includes a user, the items
the user has rated in the source and target domains, and the
corresponding ratings. Each domain of each task is divided
into support sets and query sets.

To closely approximate a real scenario, we derive inspi-
ration from the well-known meta-learning model matching
network [50], use the latest fixed-length item sequence that
the examined user has interacted with as the query set, and
use the remaining items as the support set. Finally, we define
the users or items that do not appear in the training phase
as cold-start users or items.

4.5 Hierarchical Meta-Optimization

We utilize the idea of optimization-based meta-learning to
optimize our model. We divide the input data into tasks
according to different users. This can be understood as
training a unique model for each user in the adaptation
phase to better adapt to user interests and preferences.

As shown in Fig.3, we divide the training process into
two parts: relation-wise and semantic-wise updating. We
hierarchically update different parameters during meta-
training. During relation-wise updating, the loss is com-
puted via the task’s support set and used to update the
model based on a few steps of gradient descent for a
task-adaptive model. Since the embedding matrix of the
recommendation model occupies the vast majority of all
parameters, updating all parameters at this stage will in-
crease the computational cost and make it difficult to ef-
fectively approximate the task within a limited number of
update steps. In addition, updating the parameters of the
embedding layers during relation-wise updating will lead
to frequent changes in user and item embeddings, which is
not conducive to the model focusing on learning domain
relations. Inspired by [40], we only update the parameters
of MLP and DKMT in the relation-wise update.

We tried three different meta-optimization strategies;
however, only the basic paradigm of gradient-based meta-
learning is introduced here, and MetaCDR under each opti-
mization strategy is introduced in Section 5.4.

Fig.3 shows the meta-optimization process of MetaCDR.
To avoid repetition, we only show the equations in detail
in Algorithm 1 and do not repeat them in the text. We
divide the parameters that the model needs to optimize
into three groups: 1) 0. = {0,,0s,0;} are the parameters
of the embedding network. 2) 6,,, = {W {1} p{t L}
are the parameters of the fully connected neural network. 3)
0, = H{1+L=1} are the parameters of DKMT.

In the test phase, we use a small number of new user
interaction records in the two domains to update the base
model Mp,s.. With the advantages of meta-learning and
the transfer of knowledge between domains, the model can
quickly and accurately adapt to user preferences. After that,
the model can provide rating predictions for other items.

Algorithm 1: Training of MetaCDR.

Data: a set of meta-training tasks 7; each task 7, € 7
consists of two support sets 7504 and 707
from different domains and two query sets
Tque and thg; from different domains;

Input: semantic-wise and relation-wise update steps:
s and r; global update and local update
learning rates: o and 3

Result: the trained base model;

Randomly initialize the base model Mjp,s. With the

parameters 6 = {0, 0., 05}
while no convergence do
sample a batch of tasks 7, ~ p(7)
for task 7, w.r.t. user u do

2
3
4
5 ‘ do relation-wise update via task 7,;
6
7
8

[y

end
do semantic-wise update;
end

4.6 Pretraining Strategy

The combination of the complex network structure and
meta-optimization and the large amount of data brought
by the combination of two domains (with the Cartesian
product) not only dramatically reduces the efficiency of the
model (approximately 12 GB of GPU memory and 2 hours
are required) but also induces a risk of nonconvergence.
Therefore, we set a pretraining method to optimize the
training process.

We first use a method similar to neural collaborative
filtering to train two single-domain network parameters
0. and 0,, with the traditional training method in an al-
ternating manner. Then, we use the pretrained parameters
to initialize the corresponding parameters in MetaCDR,
randomly initialize the parameters 6, of DKMT and fix
the parameter .. Here, we adopt a random strategy to
select training samples from the combined data of the two
domains. Finally, we obtain an evaluation model with a
small number of training epochs.

The pretrained model is called MetaCDR-PT. Section
5 proves that this pretraining method ensures the effec-
tiveness of the model while greatly improving the training
efficiency.

5 EXPERIMENTS AND DISCUSSION

In this section, we summarize the experimental results and
analyze them to answer the following research questions
(RQs): (RQ1) How does MetaCDR perform compared to
the state-of-the-art methods in various cold-start scenar-
ios? (RQ2) How do the hyperparameters affect MetaCDR?
(RQ3) How do meta-learning (MAML) and transfer learning
(DKMT) affect MetaCDR? (RQ4) What is the time effi-
ciency of MetaCDR-PT? (RQ5) How sensitive is MetaCDR
to side information, feedback patterns, and network archi-
tecture? (RQ6) How can MAML and DKMT help to improve
MetaCDR?
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TABLE 1
Dataset Statistics.

Datasets MovieLens Douban
User Count 1485 (19.7%) 1208 (12.1%)
User Feature gendgr, age location
occupation, area
Source 2,529 2,033
Ttem Count Target 663 4,542
rate, genre genre, director,
Source direct,0r act,or language,
Item Feature ! actor, country
Target rate, genre, theme, author,
director, actor language
Source 79,193 98,142
Rating Count Target 42 585 77,712
Rating Range 1-5 1-5

5.1 Experimental Setup
5.1.1 Datasets

We choose two real-world datasets to evaluate our model:
MovieLens IM! [18] and Douban?. Table 1 shows the details
of these datasets.

MovieLens 1M contains user rating records from the
IMDB?® for movies, as well as the features of users and
movies. Similar to the method in [31], we divide the movies
into a source domain (before 1998) and a target domain
(after 1998) according to their release years, and the ratio is
approximately 4:1. Then, to simulate a cold-start problem,
we filter out the users with between 13 and 60 interac-
tion records in each domain, and the average gap in the
interaction counts between the domains is approximately
24.77. The last ten interaction records are used as query
sets, and the rest are used as support sets. In particular, for
fairness, we use the support set in the evaluation data for the
meta-learner as the training data for the non-meta-learning
methods.

Douban is a real-world dataset crawled from the
Douban website [67]. It contains many user ratings on
movies, music, books and other items. We select movies and
books as the source domain and target domain, respectively,
and select users with between 13 and 80 interactions in
both domains as the available data; the average gap in
the interaction counts is approximately 17.48. Similar to
the processing method used for the MovieLens dataset, we
divide the data into a support set and query set for each task
(user). For the non-meta-learning methods, the support sets
in the evaluation set are also used as their training data.

For each dataset, the division ratio of the training, val-
idation and test sets is 7:1:2. We set up four scenarios on
each dataset. 1) Warm-Start: The model is evaluated with
existing users and items. 2) User Cold-Start: The model is
evaluated with new users and existing items. 3) Item Cold-
Start: The model is evaluated with existing users and new
items. 4) User-Item Cold-Start: The model is evaluated with
new users and new items.

In addition, we adopt a real-world dataset from the e-
commerce platform Amazon* to study the effect of overlap-

1. https:/ / grouplens.org/datasets/movielens/
2. https:/ /www.douban.com/

3. https:/ /www.imdb.com/

4. https://www.amazon.cn/

7

ping users, side information and feedback patterns on the
models.

5.1.2 Baselines

We compare MetaCDR with three categories of meth-
ods: (1) traditional methods (FM and NeuMF), (2) cross-
domain transfer methods (EMCDR, CSN, and SCoNet),
and (3) meta-learning methods (MeLU, MetaCS-DNN, and
MAMO).

FM [42] is a classic method for recommendation based
on the features of items and users. It can predict the person-
alized preferences of users by exploring the potential rela-
tionships between users and items through existing content
and additional feature information.

NeuMF [20] is a state-of-the-art collaborative filtering
model based on an MLP and generalized matrix factoriza-
tion (GMF). We define its output module as a linear layer
for rating prediction and embed the features of users and
items as its inputs for the cold-start problem.

EMCDR [36] is an embedding and mapping approach
for CDR. It first learns the embeddings of entities in the
source domain and target domain and then uses a neural
network to capture the mapping function between the em-
beddings of the same entity. In this paper, the two domains
are set as the source domain and the target domain in turn.

MMOoE [35] is a well-known multitask learning frame-
work. It utilizes a gating network for each task on a mixture-
of-experts structure. As suggested by [63], the embedding
parameters are shared across all experts. The embedding
vectors of users and items from the two domains are given
to each expert. We set two towers to output scores for the
two domains.

CSN [37] is a multitask model with a deep fusion
network that was first applied in computer vision. Two
networks are connected through cross-stitching to optimize
the results with multitask learning.

SCoNet [22] is a state-of-the-art transfer learning model
designed for CDR; it uses a parameter matrix to transfer
knowledge between domains and uses Lasso to limit the
degree of knowledge transfer.

MetaCS-DNN [1] is optimized with an N-layer fully
connected network to obtain embeddings and ratings
through an idea similar to that of MAML. By converting
each user into a task, the cold-start problem is transformed
into a few-shot problem.

MeLU [26] is designed with a similar idea to that
of MetaCS-DNN, except that it optimizes its personalized
recommender network at all stages and only optimizes
the general embedding network during the global update
stage. That is, the parameters of the embedding network are
updated only as the model learns about the commonalities
between users.

MAMO [9] is designed with a memory-augmented neu-
ral network to store the personalized user gradient informa-
tion, further improving the accuracy of recommendations in
cold-start scenarios.

TMCDR [69] is a meta-learning-based embedding and
mapping approach for cross-domain recommendation. Un-
like EMCDR, TMCDR utilizes a meta-network for the map-
ping stage. For fairness, we set an MLP as the base model
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TABLE 2

Source Domain (Before 1998) Target Domain (After 1998)
Scenario Model MAE] RMSE] nDCG@5t MAE] RMSE] nDCG@5T
FM 1.0858 13146 0.7371 11721 1.6397 0.7047
NeuMF 0.9176 1.1423 0.7945 0.9575 1.3826 0.7322
EMCDR 0.9004 1.1305 0.8044 0.9571 1.3547 0.7326
MMOoE 0.8876 1.1145 0.7621 0.9233 1.3015 0.7473
CSN 0.9332 1.2994 0.7529 0.9552 1.2974 0.7341
SCoNet 0.8899 1.1298 0.8048 0.9096 1.2538 0.7425
MetaCS-DNN 0.8298 1.0776 0.8129 0.8406 1.1711 0.7935
MeLU 0.8024 1.0251 0.8285 0.8213 1.1556 0.8139
Warm-Start MAMO 0.8001 1.0236 0.8207 0.8211 1.1203 0.8194
TMCDR 0.8288 1.0864 0.8186 0.9412 1.2710 0.7664
MetaCDR 0.7885 1.0142 0.8358 0.8163 T1165 0.8211
MetaCDR-PT 0.7832 1.0154 0.8331 0.8191 1.0884 0.8215
M 7.0022 1.6843 0.6926 13459 1.749 0.6881
NeuMF 0.9569 1.1127 0.7741 1.0588 1.3878 0.7502
EMCDR 0.9433 1.0094 0.7820 1.1136 1.2355 0.7566
MMoE 0.9486 1.1051 0.7793 1.1098 1.2087 0.7593
CSN 1.1168 1.3112 0.7491 1.0108 1.3796 0.7168
SCoNet 0.9474 1.0656 0.7724 0.9759 1.1714 0.7894
MetaCS-DNN 0.8471 0.9832 0.8042 0.8413 1.0355 0.8202
MeLU 0.8189 0.9941 0.8089 0.8496 1.0983 0.8436
User Cold-Start MAMO 0.8260 1.0105 0.7933 0.8551 1.1151 0.8333
TMCDR 0.8231 1.0544 0.8008 0.8496 1.1048 0.8132
MetaCDR 0.7904 0.9706 0.8216 0.8201 0.9947 0.8347
MetaCDR-PT 0.7927 0.9758 0.8208 0.8257 0.9980 0.8306
M 12073 1.6056 0.7071 1.4003 1.6937 0.6681
NeuMF 1.0289 1.2082 0.7571 1.3447 1.2634 0.6972
EMCDR 1.1222 1.236 0.7384 1.0178 1.2148 0.7512
MMoE 0.9590 1.2221 0.7525 0.9474 1.2018 0.7554
CSN 1.1691 1.2973 0.7301 1.1366 1.2423 0.7268
SCoNet 0.9677 1.1505 0.7622 0.9638 1.1533 0.7597
MetaCS-DNN 0.9049 1.1277 0.7765 0.9221 1.1392 0.7825
MeLU 0.8868 1.0478 0.8033 0.9127 1.1055 0.8261
Item Cold-Start MAMO 0.8954 1.0992 0.7969 0.9212 1.1015 0.8111
TMCDR 0.9117 1.1144 0.8016 0.9137 1.1191 0.7990
MetaCDR 0.8673 1.0241 0.8126 0.8743 T.0362 0.8469
MetaCDR-PT 0.8689 1.0366 0.8102 0.8906 1.0312 0.8483
M 1.3683 1.6969 0.6835 13379 1.7891 0.6768
NeuMF 1.1753 1.3210 0.7588 1.1908 1.3542 0.7362
EMCDR 0.9936 1. 2511 0.7704 1.0458 1.1965 0.7529
MMoE 0.9847 12116 0.7855 1.0565 1.2114 0.7583
CSN 1.0425 1.2223 0.7633 1.1147 1.2473 0.7396
SCoNet 0.9791 1.1879 0.7742 0.9869 1.1892 0.7821
MetaCS-DNN 0.9253 1.1334 0.8135 0.9523 1.1481 0.7905
MeLU 0.9009 1.0746 0.8114 0.9291 1.1266 0.7971
User-Item Cold-Start MAMO 0.8414 1.0668 0.8174 0.8804 1.1221 0.8070
TMCDR 0.8811 1.0859 0.7868 0.9721 1.1563 0.8059
MetaCDR 0.8308 1.0494 0.8241 0.8575 1.1104 0.8183
MetaCDR-PT 0.8394 1.0616 0.8258 0.8592 1.1285 0.8022

in the transfer stage for each domain and obtain the embed-
ding vectors based on the trained embedding layers. Similar
to EMCDR, the two domains are set as the source domain
and the target domain in turn.

The source codes of FM®, NeuMF°, EMCDR’, SCoNet?,
MeLU? and MAMO!? are openly available, and we modify
their data processing and output components to apply them
to our experiments. We implement MetaCS-DNN with the
code of MeLU, which has a similar idea. We implement CSN
ourselves.

5. https:/ / github.com/lyst/lightfm

6. https://github.com/hexiangnan/neural_collaborative_filtering
7. https:/ / github.com/MaJining92 /EMCDR

8. http:/ /home.cse.ust.hk/~ghuac/

9. https:/ / github.com/hoyeoplee/MeLU

10. https:/ / github.com/dongmangqing/Code-for-MAMO

5.1.3 Parameter Settings

For MetaCDR, we set MAML as the base meta-learner; the
learning rates for semantic-wise and relation-wise updating
are set to a=0.01 and 3=0.001, respectively; the regulariza-
tion parameter A is set to 0.01; and the numbers of steps
of relation-wise and semantic-wise updating are set to 5
and 1, respectively. The embedding dimensionality of each
feature is set to 32. Two [32 x 8 — 64 — 64 — 1] MLPs are
used as the basic model. The rectified linear unit (ReLU)
is employed as the activation function, and optimization
is conducted by adaptive moment estimation (Adam) [4].
We also use batch normalization [23] to speed up the con-
vergence of the model. We set the batch size to 16 tasks,
and the maximum numbers of epochs are set to 30 and 20
for MetaCDR in MovieLens and Douban, respectively. For
MetaCDR-PT, the maximum numbers of epochs are set to
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TABLE 3
The Experimental Results on Douban, with the Best Result Shown in Bold.
Source Domain (Movie) Target Domain (Book)
Scenario Model MAE] RMSE] nDCG@5t MAE] RMSE] nDCG@5T
FM 0.8222 0.8568 0.7990 0.8332 0.9106 0.7464
NeuMF 0.7309 0.8063 0.8244 0.7084 0.8542 0.7836
EMCDR 0.7241 0.8117 0.8001 0.7411 0.9011 0.7739
MMOoE 0.7010 0.8088 0.8052 0.7298 0.8621 0.7833
CSN 0.7964 0.8245 0.7554 0.7262 0.9004 0.7791
SCoNet 0.7044 0.7822 0.7549 0.7253 0.8856 0.7985
MetaCS-DNN 0.6597 0.759% 0.8582 0.6829 0.8553 0.8496
MeLU 0.6303 0.7555 0.8476 0.6638 0.8468 0.8542
Warm-Start MAMO 0.6575 0.7681 0.8298 0.6977 0.8507 0.8558
TMCDR 0.7079 0.7836 0.7666 0.7011 0.8768 0.7922
MetaCDR 0.6253 0.7494 0.8505 0.6413 0.7922 0.8631
MetaCDR-PT 0.6246 0.7461 0.8514 0.6439 0.7952 0.8626
™ 0.7016 0.8997 0.7479 0.8043 0.8527 0.7673
NeuMF 0.7476 0.8323 0.7312 0.7279 0.8859 0.7946
EMCDR 0.8215 0.8738 0.7325 0.8432 0.9023 0.8041
MMoE 0.7884 0.8585 0.7236 0.7059 0.8522 0.8114
CSN 0.8660 1.0012 0.6688 0.7414 0.8516 0.8335
SCoNet 0.8053 0.8354 0.8283 0.7087 0.8302 0.8264
MetaCS-DNN 0.6484 0.7979 0.8279 0.6795 0.8079 0.8319
MeLU 0.6273 0.7337 0.8450 0.6712 0.7911 0.8530
User Cold-Start MAMO 0.6266 0.7588 0.8222 0.6777 0.8127 0.8331
TMCDR 0.6655 0.8172 0.7540 0.7119 0.8377 0.7974
MetaCDR 0.6081 0.7322 0.8672 0.6697 0.7645 0.8658
MetaCDR-PT 0.6101 0.7359 0.8654 0.6718 0.7669 0.8638
™ 0.8010 0.9567 0.7969 0.8149 0.9181 0.8098
NeuMF 0.7604 0.8979 0.7044 0.8293 0.8666 0.7801
EMCDR 0.7699 0.9003 0.6927 0.8959 0.9007 0.8066
MMoE 0.8099 0.9167 0.6868 0.8104 0.9120 0.7158
CSN 0.8326 0.9522 0.7542 0.8008 0.8962 0.7963
SCoNet 0.7517 0.8532 0.8213 0.7876 0.8846 0.8012
MetaCS-DNN 0.6914 0.8125 0.8698 0.7124 0.8313 0.8555
MeLU 0.6545 0.7988 0.8672 0.6621 0.8154 0.8435
Item Cold-Start MAMO 0.6877 0.8151 0.8633 0.6911 0.8142 0.8562
TMCDR 0.6845 0.8221 0.8574 0.6891 0.8173 0.8298
MetaCDR 0.6354 0.7846 0.8881 0.6369 0.8077 0.8591
MetaCDR-PT 0.6393 0.7876 0.8811 0.6856 0.7971 0.8583
M 0.8415 0.9936 0.7757 0.8831 13012 0.7969
NeuMF 0.8103 09111 0.8396 0.8028 0.9235 0.8112
EMCDR 0.8274 0.9504 0.7961 0.8327 1.0158 0.8049
MMOoE 0.8206 0.9541 0.7802 0.8029 0.9816 0.8122
CSN 0.8166 0.9386 0.7992 0.8283 0.9326 0.8092
SCoNet 0.7533 0.8952 0.8433 0.8007 0.8822 0.8253
MetaCS-DNN 0.6915 0.8181 0.8513 0.7584 0.8304 0.8204
MeLU 0.6676 0.7761 0.8572 0.7236 0.7989 0.8355
User-Item Cold-Start MAMO 0.6569 0.7715 0.8635 0.6895 0.7886 0.8385
TMCDR 0.7337 0.8516 0.8447 0.8158 0.9002 0.8204
MetaCDR 0.6379 0.7505 0.8823 0.6593 0.7726 0.8461
MetaCDR-PT 0.6598 0.7889 0.8656 0.6612 0.7941 0.8409
only 10 and 5 K orun 1
y : DOGOK =Y -~ — 17)
= logz2(k +1)

5.1.4 Evaluation Metrics

We adopt three evaluation metrics, the mean absolute error
(MAE), root-mean-square error (RMSE), and normalized
discounted cumulative gain at rank K (nDCG@K)), to eval-
uate MetaCDR and the other baseline models. Here, we set
K = 5. The specific calculation method is as follows:

MAE_ |U‘ Z Z |Tuz rul (14)

u€U ZGI

D (rui—Fuq)?  (15)

i€l

nDCGAK = ‘—(1” > peCak
ue

RMSE = —
\UI Z IN |

—_— 1
7 IDCGAQK (16)

where U is the user set utilized in the test, I, denotes
the interaction record of user u, and r,; and #,; are the
real rating and the predicted rating, respectively. The IDCG
calculates the best possible DCG for each user. The MAE and
RMSE calculate the degree of error incurred when predict-
ing ratings, and lower MAE and RMSE values correspond to
better model performance. The NDCG represents the overall
performance of the model for a certain user, and a higher
NDCG indicates better performance.

5.1.5 Environment

All our experiments are conducted on a Linux server with a
GPU (Tesla V100 with 32 GB of RAM) and CPU (Intel Xeon
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Fig. 4. Impact of the count of overlapping users.
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Fig. 5. Impact of the count of items in the support sets.

E5-2698 v4). The operating system is Ubuntu'! 16.04.6, and
Python!? version 3.6.8 is used. The model is built based on
the deep learning library PyTorch'?, version 1.4.1.

5.2 Performance Comparison (RQ1)

In this section, we compare MetaCDR and its pretrained
version MetaCDR-PT with several state-of-the-art baseline
models. We design four scenarios for each dataset: warm-
start, user cold-start, item cold-start, and user-item cold-
start.

Table 2 and Table 3 show the performance of all models
in different domains of the two datasets for the four sce-
narios. It is obvious that MetaCDR and MetaCDR-PT out-
perform the state-of-the-art models for most of the datasets
and scenarios, especially in cold-start scenarios with more
severe conditions. Further analysis of the results shows
that the meta-learning method usually performs better than
the traditional methods and normal cross-domain methods
when faced with a cold-start problem.

According to an in-depth analysis of the Amazon
dataset, the average ratio of overlapping users to the total
number of users in any two domains is less than 12% [24].
Fig.6 shows three pairs of domains as examples. To make
the experiment more similar to the real world and evaluate
the robustness of the models, we set three small-overlap
scenarios for each dataset with fewer overlapping users in
the training phase. To make the experiment fair, we use the
same user-item cold-start data to evaluate each scenario.
Fig.4 shows the performance of our method (MetaCDR),

11. https:/ /ubuntu.com/
12. https:/ /www.python.org/
13. https:/ /pytorch.org/
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Fig. 6. The proportions of overlapping users among various domains in
Amazon. We select three domains as examples: movies, books, and
music. The yellow part in each figure represents overlapping users.
Notably, the problem in which there is little overlap cannot be ignored.

the meta-learning methods (MeLU), the cross-domain meth-
ods (SCoNet), and the traditional methods (NeuMF) in the
four scenarios. It is evident that with the decrease in the
number of overlapping users, MetaCDR exhibits stronger
robustness (a smaller increase in MAE) than other baselines
and achieves the best accuracy (lowest MAE).

To test the impacts of different degrees of cold-start
problems on the model effects of the results, we test the per-
formance of traditional methods (NeuMF), meta-learning
methods (MeLU), cross-domain methods (SCoNet), and our
MetaCDR by limiting the maximum length of each support
set. The results in Fig.5 show that as the support set de-
creases, the performance of MetaCDR declines least among
all models. Therefore, MetaCDR is sufficiently robust and
can address the cold-start problem well when very limited
data are available.

5.3 Hyperparameter Analysis (RQ2)

Next, we study the impacts of hyperparameters on
MetaCDR by adjusting them. To better demonstrate the
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TABLE 4
The impacts of the locations and number of DKMTs for MovieLens.

DKMT MAE
HT [ H? | H? | Source Domain | Target Domain
X X X 1.3497 1.1828
v X X 0.9831 0.9677
X v X 1.1004 1.2323
X X v 1.0375 1.3088
X v v 0.9241 1.1082
v X v 0.8175 0.8651
v v X 0.8308 0.8575
v v v 0.8493 0.8525

effect of our model in the most challenging scenario, the
experiments below are all performed in the user-item cold-
start scenario. In this section, we analyze the impacts of
three hyperparameters on the effectiveness of the model:
the semantic-wise and relation-wise update steps and the
regularization coefficient .

MovieLens Source Domain MovieLens Target Domain

—
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11

3
2

~— _—— 3

Semantic-wise Update steps
Relation-wise Update steps

Semantic-wise Update steps
Relation-wise Update steps

Fig. 7. The impact of the semantic-wise and relation-wise update steps
on MetaCDR for MovieLens (user-item cold-start). The left panel is in
the source domain, and the right panel is in the target domain.
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Douban Target Domain
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Semantic-wise Update steps
Relation-wise Update steps

Fig. 8. The impact of the semantic-wise and relation-wise update steps
on MetaCDR for Douban (user-item cold-start). The left panel is in the
source domain, and the right panel is in the target domain.

Fig.7 and Fig.8 show the impact of the semantic-wise and
relation-wise update steps on MetaCDR (MAE). Because
similar experimental results are observed in terms of the
RMSE and nDCG@5 metrics, we only report the MAE re-
sults, and the range of the number of update steps is from 1
to 5. The analysis shows that the impacts of the relation-wise
and semantic-wise update steps on MetaCDR are relatively
small in both the source and target domains. The model
exhibits strong stability. The results show that the number of
semantic-wise or relation-wise update steps has little effect
on the model results in the user-item cold-start scenario.
However, we still choose to perform 5 steps in the relation-
wise update phase because in other scenarios, multiple
relation-wise updates often bring some improvements to the
model.

Fig.9 and Fig.10 show the impact of the regularization
coefficient, i.e., the sparsity of the DKMT parameters, on

11
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Fig. 9. The impact of A on MetaCDR for MovieLens (user-item cold-
start).
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Fig. 10. The impact of A on MetaCDR for Douban (user-item cold-start).

TABLE 5
The impacts of different meta-learners.

MovieLens-MAE Douban-MAE
Meta-learner
Source  Target | Source Target
-MAML 0.8308 0.8575 | 0.6379  0.6593
-Meta-SGD 0.8257  0.8669 | 0.6321  0.6848
-FOMAML 0.8329  0.8617 | 0.6499  0.6504
-Reptile 0.8562  0.8843 | 0.6536  0.6833

MetaCDR. We evaluate the effect of A on the model for
the MovieLens and Douban datasets (in terms of the MAE,
RMSE, and nDCG@5). We select [0.0001, 0.001, 0.01, 0.1, 1] as
the values of X for the evaluation. Through the experimental
results, it can be found that the effect is best when ) is set
to approximately 0.01, and as it continues to decrease, the
model effect changes slightly. However, when it increases,
the model effect decreases significantly. This means that
excessively sparse parameters also limit the transfer of cross-
domain knowledge. Finally, we choose 0.01 as the regular-
ization coefficient of MetaCDR.

We explore the optimal locations and number of DKMTs
through further experiments. The basic model we use is a
[32 x 8 — 64 — 64 — 1] MLP, so we can add three DKMT
structures: H! € R256%64 [2 ¢ R64%64 and H3 ¢ RO4X1,
We successively change the locations and number of DKMTs
and evaluate their impacts. The results are shown in Table
4. Although the trends are different in different domains,
overall, the model with DKMTs mostly shows different de-
grees of improvement than the model without DKMTs. This
shows that the DKMT structure is effective. Some models
that have DKMTs with fewer parameters exhibit declines
in performance after a few epochs, so we set fewer epochs
for these models to obtain better results by stopping the
process early. Similarly, enabling all DKMT structures does
not significantly improve the effectiveness of the model, as
the use of too many parameters reduces the computational
efficiency of MetaCDR; thus, we set DKMTs in the first two
layers and omit them in the last layer.

5.4

To test the impacts of different meta-learners for MetaCDR,
we choose four meta-learners:

Impact of Meta-Learners
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MAML [12] is a classic gradient-based meta-learner.
It uses support sets for task-adaptive local updates and
query sets for global updates. We improved it to suit the
MetaCDR scenario. During the training procedure, first, all
the parameters in the base model Mj,s. are initialized, and
a copy My,s.' of the parameter set is generated. Second,
we randomly select a batch of tasks 7, (for users u) and
feed their support sets as inputs into the MetaCDR model to
obtain the prediction results. Third, we calculate the loss £
and gradient G through the results to update the parameters
0., and 0}, of Mp.s' and obtain the meta-model M,,ctq.
This step explores the complex cross-domain relationship
information, and it can be repeated many times to achieve
the desired effect. It is worth noting that at this step, we have
not changed the original model Mp,s. but only updated
My ,,.- Fourth, the query sets are fed into the meta-model
M etq to obtain the loss £’ and gradient G'. In this step,
we clamp the gradient range so that the model can be
adjusted more conservatively (this is essential for sensitive
meta-learning models). Finally, all parameters in the base
model My,s. are updated with the gradient G’. In general,
the overall form of the model update can be expressed as:

0 =0-38veLy(0.,

em - av0m£8(6€7 emy 9h)7
eh - avehﬁs (9ea ema eh))

(18)

where £, and L, are the losses in the support and query
sets, respectively. Thus far, the model has completed a
batch update, and this process is repeated until the model
converges. Then, we obtain the trained meta-model.

Meta-SGD [30] is another gradient-based meta-learner
based on MAML. The difference is that Meta-SGD can
not only update the parameters of the network but also
adaptively adjust the learning direction and learning rate
in meta-optimization.

First-Order MAML (FOMAML) [38] implements meta-
updates with the first-order gradient. Unlike MAML, FO-
MAML is updated locally based on each task from a batch in
turn, and the global update is based on parameters after the
local update. FOMAML is faster and consumes less memory
because it does not need to compute Hessian matrices.

Reptile [38] is a new first-order meta-learner. Unlike
FOMAML, Reptile does not need a training-test split for
each task, which makes it more flexible in certain scenarios.
Specifically, Reptile uses the same set of samples from one
task for multistep local and global updates. Here, we up-
date the embedding parameters in both semantic-wise and
relation-wise updates:

1o
9=ﬂ?;9k+(1—6)9

— (19)
;ﬂ =0 - Ongﬁ(@e, Om, Hh)
where K is the number of tasks in each task batch.
According to the results shown in Table 5, in most

scenarios, MAML is similar to MetaSGD and FOMAML,
and MAML has the most stable effect. Reptile is faster, but it
usually performs worse. Therefore, we adopt MAML in our
model.
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TABLE 6
Training Epochs and Time (Seconds) and Memory (MB) Consumption
per Epoch on MovieLens for User Cold-Start. The Results of
MetaCDR-PT/PT+ are Reported as Pretraining/Meta-training.

Model MetaCDR FOREC -PT -PT+
Random Sampling | x X v v
Epochs 30 10 10/10 10/10
Time 966.2 139.4 22.6/79.2  27.5/77.8
Memory 11141.12 4580.8 4334.9 4664.7
MAE 0.7904 0.8841 0.7927 0.7920

5.5 Ablation Experiment (RQ3)

Finally, we study the impact of meta-learning (MAML)
and transfer learning (DKMT) on MetaCDR with ablation
experiments.
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Fig. 11. Analysis of the impact of meta-learning on MetaCDR via various
ablation models with MovielLens (user-item cold-start).
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Fig. 12. Analysis of the impact of meta-learning on MetaCDR via various
ablation models with Douban (user-item cold-start).

Impact of Meta-Learning: To study the impact of meta-
learning, we design three ablation models for compari-
son with MetaCDR: 1) All parameters are updated in the
relation-wise update step: MetaCDR-AP. 2) As in transfer
learning, all training data are used for pretraining as in
the traditional method, and the base model is fine-tuned
when new users arrive: MetaCDR-FT. 3) Only traditional
methods are used to optimize the basic model, and the
information of new users is also considered training data
without adaptation: MetaCDR-BM.

Fig.11 and Fig.12 show the comparisons among the
above ablation models and MetaCDR. With respect to
the three metrics in the two domains, MetaCDR always
performs best. Moreover, MetaCDR-AP performs slightly
worse than MetaCDR because the impact of hierarchical
parameter optimization, which allows the model to focus on
different information, is noticeable. The effects of MetaCDR-
FT and MetaCDR-BM lag significantly behind those of
MetaCDR, which shows that meta-learning plays a vital role
in the model.

Impact of Transfer Learning: To understand how DKMT
impacts this model, similar to the previous analysis, we de-
sign three ablation models for comparison with MetaCDR:
1) Two different cross-network parameters H, and H; are set
for each DKMT: MetaCDR-DC. 2) DKMT is replaced with
CSN; that is, the same weight is assigned to all informa-
tion: MetaCDR-CSN. 3) Two recommendation networks are
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TABLE 7
Experimental Results on Amazon for User Cold-Start, with the Best Result Shown in Bold.

Book—Movie M NeuMF MMoE SCoNet MeLU TMCDR MetaCDR MetaCDR-PNN
Hit@10 0.3007 0.3225 0.3058 0.3544 0.4161 0.3390 0.4242 0.3834
AUC 0.6589 0.6204 0.6937 0.7215 0.7420 0.7078 0.7311 0.7022
MAP@10 0.3839 0.4066 0.4510 0.4583 0.4727 0.4664 0.5154 0.4868
Book—Music M NeuMF MMoE SCoNet MeLU TMCDR MetaCDR MetaCDR-PNN
Hit@10 0.4584 0.4388 0.4675 0.4836 0.5379 0.5050 0.5682 0.5401
AUC 0.6884 0.6527 0.6716 0.6994 0.7524 0.7233 0.7691 0.7299
MAP@10 0.4278 0.4112 0.4397 0.4164 0.5215 0.4734 0.5358 0.5079
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Fig. 13. Analysis of the impact of DKMT on MetaCDR via various
ablation models with MovielLens (user-item cold-start).
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optimized independently in different domains, and only the
user embedding is shared. The two networks are supervised
by the labels obtained from the two domains separately and
are optimized in an alternating manner: MetaCDR-OI.

Fig.13 and Fig.14 show the comparisons between
MetaCDR and the above three ablation models. MetaCDR
still performs best. The effect of MetaCDR-DC decreases
because the introduction of many parameters obviously
reduces the effect of the model. The results of MetaCDR-OI
are worse than those of the first two models, indicating that
the DKMT structure is necessary. It is worth mentioning that
the MetaCDR-CSN model yields the worst effect in most
scenarios and for most metrics because forcing all features
to be given the same weight is not always conducive to the
transfer of information.
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Fig. 15. Visualization of the DKMT parameters obtained from the base
model after training, adapted separately for two users: (Male, 18-24,
Programmer) and (Female, 50-55, Homemaker).

5.6

In this section, we demonstrate the effectiveness of the
proposed pretraining strategy through experimental com-

Impact of Pretraining (RQ4)

parisons. Table 6 shows the time and space consump-
tion of the four different methods. FOREC [3] is a cross-
market recommendation algorithm with pretraining. In fact,
FOREC's pretraining strategy is similar to the meta-training
in MetaCDR. The difference is that FOREC only trains the
meta-model on a single network and adapts it to different
markets. Therefore, for fairness, FOREC’s network structure
is set to be the same as MetaCDR’s single-domain network;
i.e., it uses the same embedding and MLP. MetaCDR-PT+ is
another pretraining MetaCDR that is trained with additional
nonoverlapping users during single-domain pretraining.
From the results, we find that the time and space efficiency
of MetaCDR-PT/PT+ are much higher than those of the
other two strategies.

5.7 Model Applicability Study (RQ5)

The Amazon dataset is used to evaluate the performance of
MetaCDR in scenarios without side information and with
implicit feedback. Unlike previous datasets, Amazon has no
user or item features, so we only conduct experiments in
the user cold-start scenario. Furthermore, due to the change
in the feedback pattern, we introduce new metrics Hit@10,
area under the curve (AUC), and mean average precision
(MAP)@10 in this section. Furthermore, to study the impact
of the network architecture on MetaCDR, we introduce
MetaCDR-PNN in this experiment, which uses PNN as the
base network.

The experimental results are shown in Table 7. The
meta-learning methods still show excellent performance in
scenarios without side information and with implicit feed-
back. MetaCDR achieves the best results on most metrics.
Although the performance of MetaCDR-PNN is slightly
worse than that of MetaCDR, it is still better than the other
methods.

5.8 Visualization (RQ6)

To understand what information is transferred by DKMT
and what is being adjusted via the adaptation of meta-
learning, we show an 8 x 8 portion of the second layer
of DKMT parameters in three cases in Fig.15. We find that
DKMT learns a unique weight for each feature dimension.
In Fig.15, the lighter the color, the closer the weight is to
0. A light-colored area indicates that the feature of this
dimension plays a small role in cross-domain knowledge
transfer, so the model learns a smaller weight for it. The
dark blue and dark red areas indicate that the information
of these dimensions has an important role, i.e., DKMT can
use the differences in user preferences between different
domains to capture the evolution of interest.
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A comparative analysis of the heatmaps obtained under
the above three conditions reveals the role of adaptation
in meta-learning in MetaCDR. After updating the model
with the information from two different users, the two
DKMTs obtain different parameters. That is, in MetaCDR, a
personalized model can be generated quickly for each user
through meta-learning.

6 CONCLUSION

We construct a novel recommendation model called
MetaCDR based on meta-learning and transfer learning to
solve the cold-start problem through cross-domain knowl-
edge and a model optimization strategy.

MetaCDR implements cross-domain knowledge transfer
in a meta-learning setting through a DKMT module and
updates its parameters hierarchically with meta-learning to
learn the complex relationships between the given domains
and the appropriate embedding method for user and item
features. Moreover, we propose a novel pretraining strat-
egy to make the developed model more applicable. The
experimental results prove that the effect of MetaCDR is
significantly better than those of the state-of-the-art models
in various scenarios.
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